If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-20-63x=0
a = 16; b = -63; c = -20;
Δ = b2-4ac
Δ = -632-4·16·(-20)
Δ = 5249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-\sqrt{5249}}{2*16}=\frac{63-\sqrt{5249}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+\sqrt{5249}}{2*16}=\frac{63+\sqrt{5249}}{32} $
| (13/3)x^2-78x-624=0 | | 16s-5s-2s-2s-6s=19 | | X/12=3x/4-48 | | 8/5+1/4t=5 | | (x-51/2)0.75=5/8 | | x+x+90=990 | | 9+16x-5=7x+76-3x | | 13/3x^2-78x-624=0 | | 5/17x+2=2/17x-155/17x=2/17x+K | | 2x^+2x-21=0 | | 2+4y(5.90-y)=16.80 | | 5x-3x+4=3x | | 5^x+3=143 | | (X/2)-(x/4)+9=x+9 | | (11u)/(10)+2=(9u)/(8) | | -6(x-2)=-2x+4 | | 3x^2-43x+14=0 | | 8(1=5x)+5=13=5x | | (9x-3)(x+4)=x | | 54+9/2r=-54 | | (n+3)(n+4)=0 | | 17u-15u-2u+2u=16 | | 2x+4(5.90-x)=16.80 | | 18r+3r+4r-21r=16 | | 3/4x-2/3=-5/3x+7 | | 25+5/7r=-25 | | -x2=2+x | | 5/17x+2=2/17x-15 | | 4*a*7-6*10=80 | | 2s+5s-6s=15 | | 5/17x=2/17x+K | | 4x+2x=+x+4x-10x=10 |